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Biochemical networks integrate enzyme-mediated substrate conversions with non-
enzymatic complex formation and disassembly to accomplish complex biochemical
and physiological functions. The choice of parameters and constraints used in most of
these studies is numericallymotivated and network-specific. Although sound in theory,
the outcomes that result depart significantly from the intracellular milieu and are less
likely to retain relevance in a clinical setting. There is a need for a computational tool
which is biochemically relevant,mathematically rigorous, andunbiased, andcanascribe
functionality to and generate potentially testable hypotheses for a user-defined
biochemical network. Here, we present “ReDirection,” an R-package which
computes the probable dissociation constant for every reaction of a biochemical
network directly from a null space-generated subspace of the stoichiometry number
matrix of themodeled network. “ReDirection” delineates this subspace by excluding all
trivial and redundant or duplicate occurrences of non-trivial vectors, combinatorially
summing the vectors that remain and verifying that the upper or lower bounds of the
sequence of terms formed by each row of this subspace belong to the open real-
valued intervals (−∞,−1) or (1,∞) or whether the number of terms that are differently
signed are almost equal. “ReDirection” iterates these steps until these bounds are
consistent and unambiguous for all reactions of the modeled biochemical network.
Thereafter, “ReDirection” filters the terms from each row of this subspace, bins them to
outcome-specific subsets, sumsandmaps this to anoutcome-specific reaction vector,
and computes the p1-norm, which is the probable dissociation constant for a reaction.
“ReDirection” works on first principles, does not discriminate between enzymatic and
non-enzymatic reactions, offers a biochemically relevant and mathematically rigorous
environment to explore user-defined biochemical networks under baseline and
perturbed conditions, and can be used to address empirically intractable
biochemical problems. The utility and relevance of “ReDirection” are highlighted by
numerical studies on stoichiometric number models of biochemical networks of
galactose metabolism and heme and cholesterol biosynthesis. “ReDirection” is freely
available and accessible from the comprehensive R archive network (CRAN) with the
URL (https://cran.r-project.org/package=ReDirection).
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1 Introduction

An undirected biochemical network is converted into a pathway
by a combination of physicochemical (temperature, pH, and
compartmentalization) and biochemical (small-molecule effectors,
shared intermediates, and feedback) factors. Despite the availability
and accessibility of advanced data analytical tools, true mechanistic
insights into the manner in which a biochemical network
accomplishes a complex function are unclear (Ferrara et al.,
2008; Keller and Attie, 2010; Biane and Delaplace, 2019; Seyhan
and Carini, 2019; Koutrouli et al., 2020). An essential first step in the
analysis of a biochemical network is the construction of a suitable
model. This is usually data-driven and coarse-grained, where nodes
can represent proteins, genes, or cells, and edges indicate lines of
supporting evidence (empirical, “omics” datasets, co-expression
data, text mining, and knowledge-based databases) (Reinker
et al., 2006; Ferrara et al., 2008; Lecca et al., 2009; Keller and
Attie, 2010; Haraldsdottir et al., 2012; Shindo et al., 2018; Biane
and Delaplace, 2019; Seyhan and Carini, 2019; Koutrouli et al., 2020;
Wittenstein et al., 2022). Analyzing such a network results in several
network-specific characteristics such as the clustering coefficient
and path distance (Reinker et al., 2006; Lecca et al., 2009;
Haraldsdottir et al., 2012; Shindo et al., 2018; Wittenstein et al.,
2022). This initial characterization can be complemented by a
library of equally plausible outcomes, all of which are made to
approximate the original architecture (Lecca et al., 2009; Riva et al.,
2022). Inverse modeling, for a dataset, generates several possible
candidate causal network models, allows hypothesis testing, and
may potentially be more informative (Reinker et al., 2006; Lecca
et al., 2009; Haraldsdottir et al., 2012; Rottman and Hastie, 2014;
Shindo et al., 2018; Riva et al., 2022; Wittenstein et al., 2022).

Causal networks (CNs) are probability-based and can model
alternate scenarios for every node of a small network whilst
concomitantly ascribing specific states to each node (Rottman
and Hastie, 2014). Although CNs have had considerable success
in investigating real-world problems, inferring biochemical function
from a network of genes/proteins/metabolites remains challenging
(Rottman and Hastie, 2014). For example, a causal network is
usually modeled as an “acyclic” graph, which is in complete
contrast to the plethora of feedback (positive and negative)
mechanisms and reverse reactions that exemplify biochemical
systems (Rottman and Hastie, 2014). CNs are also inferential,
modeled as a homogenous Poisson’s process (discrete event,
discrete domain) and inherently Markovian (Lecca et al., 2009;
Rottman and Hastie, 2014). Biochemical function, on the other
hand, is dependent on thresholds (signal transduction and pattern
receptors), characterized by minor perturbations and is memory-
driven, all of which are better modeled as continuous events or
variables in discrete time. CNs, to be truly informative, also require a
significant amount of initial data, which is a major limitation in
modeling biochemical networks. These arguments notwithstanding,
CNs have contributed to well-defined observables in the presence of
ample empirical data, such as phenotype mapping, along with dose-
and stimulus-driven response of genes (Goto et al., 2019; Gopalan
et al., 2021; Lu et al., 2021; Salvador et al., 2021; Saptarshi et al.,
2021). CNs of genes and proteins result in lists which can be utilized
for large-scale data mining (parameter selection and candidate
genes) and/or analytics, as in precision medicine and biomarker

profiling (Biane and Delaplace, 2019; Goto et al., 2019; Seyhan and
Carini, 2019; Gopalan et al., 2021; Lu et al., 2021; Salvador et al.,
2021; Saptarshi et al., 2021).

Unlike data-driven modeling, optimization- and enumeration-
based strategies can be used to investigate and characterize a
biochemical network from first principles and at the near-steady
state (Segre et al., 2002; Shlomi et al., 2005; Wagner and Urbanczik,
2005; Urbanczik, 2007; Orth et al., 2010; Muller and Regensburger,
2016; Klamt et al., 2017; Klamt et al., 2018; Lee et al., 2020).
Algorithms which assess the flux of a reactant (flux balance
analysis, flux variability analysis, regulatory on–off minimization,
and minimization of metabolic adjustment) will maximize or
minimize the biomass of a metabolite of interest and can be used
to investigate the effects of deletions and other perturbations on the
flux of metabolites through a large network (Segre et al., 2002;
Shlomi et al., 2005; Orth et al., 2010; Klamt et al., 2018; Lee et al.,
2020). The numerical enumeration of elementary flux modes and
vectors, along with extreme pathway analysis, can be used to derive
meaningful information about “metabolic” hubs and smaller subsets
of cooperating reactions from biochemical networks (Wagner and
Urbanczik, 2005; Urbanczik, 2007; Muller and Regensburger, 2016;
Klamt et al., 2017). A mathematical model of a biochemical network
can also be made to integrate real-time data such as from “omics”-
based studies, spectroscopic analysis, and pulse-chase experiments,
which allows an investigator to refine and optimize the model
(Antoniewicz, 2015; Heuillet et al., 2018; Wang et al., 2020). This
approach of combining experimental data with theoretical studies is
referred to as metabolic flux analysis (MFA) and is utilized in
biotechnological applications to regulate the biomass of a
preferred reactant/product (Antoniewicz, 2015; Heuillet et al.,
2018; Wang et al., 2020).

The aforementioned limitations to data-drivenmodels and biomass
optimization-based strategies advocate the need for a computational
tool which can compute biochemically relevant parameters directly
from a modeled network. This implies that the parameter should be
derivable, measurable and its analysis should be able to generate testable
hypotheses. The dissociation constant is an empirically determined
parameter, which can be mapped to several biochemically relevant
outcomes of a reaction (forward, reverse, equivalent, and tight binding)
(Furukawa et al., 2016; Yu and Craciun, 2018; Gerstl et al., 2019; Sparks
et al., 2019; Kundu, 2022; Sura and Antalik, 2022). The probable
dissociation constant for a reaction is a numerical measure that is
computed from a null space-generated subspace of the stoichiometry
number matrix for a biochemical network and possesses several
desirable properties of the true dissociation constant (Kundu,
2023a). Here, we present “ReDirection,” an R-package which can
compute the probable dissociation constant for every reaction of a
user-defined biochemical network (Kundu, 2023b). This paper
introduces some of the principles and definitions used by
“ReDirection” to compute the probable dissociation constant for a
user-defined biochemical network. An outline of the functions used by
“ReDirection,” their dependencies, rationale, and usage is presented. A
stepwise description and brief analysis of the algorithm that
“ReDirection” deploys are also described, followed by numerical
studies on constrained biochemical networks of human galactose
metabolism and heme and cholesterol biosynthesis. The paper
concludes with a summary of the salient features, limitations, and
future studies which may utilize “ReDirection.”
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2 Methods

2.1 Definitions, preliminary concepts, and
notations relevant to comprehending the
functionality of “ReDirection”

The algorithm deployed by “ReDirection” is mathematically
rigorous and biochemically relevant, and has been extensively
discussed (Kundu, 2023a; Kundu, 2023b). Briefly, a biochemical
network is modeled as the sparse stoichiometry number matrix
( ~ S() ⊂ ZJ×I

═

) and is a collection of i-indexed (i � 1, 2 . . . I
═)

r-reaction vectors (ri ∈ Zj) (Def. (1a)) (Kundu, 2023a; Kundu,
2023b). Each reaction vector is populated by combinations of
j-indexed (j � 1, 2 . . . J) m-stoichiometry numbers (mj ∈ Z) of
J-reactants/products (Def. (1b)) (Kundu, 2023a; Kundu, 2023b).
The modeled biochemical network is subsumed to operate under
several biochemically relevant numerical constraints. These include
lower bounds for the numbers of reactants/products and reaction
vectors, modeling a reaction vector as the interaction between one or
more pairs of molecules (enzymatic or non-enzymatic) with
differently signed stoichiometry numbers, equilibrium (S ≃ 0),
and fixed outcomes for a participating reaction (forward, reverse,
and equivalent) (Def. (2)) (Kundu, 2023a; Kundu, 2023b).

“ReDirection” is assessed by the time needed (Tmin) to
unambiguously assign an outcome to every reaction (Def. (3)).
This depends on the architecture and complexity of the
numerical values that constitute the stoichiometric number
matrix of the modeled biochemical network, the nullity of the
null space, and a network-suitable null space-generated subspace
(Kundu, 2023a; Kundu, 2023b). For a stoichiometry number matrix,
the desired null space is

vk ∈ V⊂ RI
═∣∣∣∣vkT × S � �0

T{ }, (Def .4)

where

V≝Null space ofS, (1)
#V ≥ 2, (2)

k � 1, 2 . . .K, (3)
K � #V, (4)

S ( ) ⊂ ZJ×I
═

. (5)
“ReDirection” combinatorially sums the vectors of the null space
and, thence, each null space-generated subspace (Kundu, 2023a).
This results in several subsets of vectors which contribute to the
cardinality of each null space-generated subspace and may be
summarized. We describe this comprehensive null space-
generated subspace as the set which contains trivial vectors,
along with redundant or finite occurrences of non-trivial and
identical null space vectors (Kundu, 2023a):

V═ � V ∪H═ ∪ H ∪ L, (Def .5)
where

V≝Null space of user − defined stichiometry numbermatrix,

L≝Set of trivial null space vectors, (Def .6)

H≝Set of unique null space vectors, (Def .7)
H═ ≝Set of vectors which have one ormore subsets of identical vectors.

(Def . 8)
Rewriting Def. (4) to include these vectors yields

vk ∈V
═
⊆ V⊂ RI

═
∣∣∣∣∣∣∣vkT × S � �0

T{ }, (Def .9)

where

V═≝Comprehensive subspace ofV with cardinality #V═ ,
V≝Null space ofS,

vk � �0 Trivial null space vector( ), (6)
vk ≠ �0 Non − trivial null space vector( ), (7)

k � 1, 2 . . .K,

K � #V .═

We now enumerate various cases that may arise when we
combinatorially sum non-trivial vectors:

Case 1: If v1 ≠ v2 . . .≠ vK ≠ 0( ),
then, v1 , v2 . . . , vK{ } ∈ H ⊂V

═( ) and H
═ � ∅( ), Def. 10( )

0 #H � K; #H
═ � 0. 8( ), 9( )

Case 2a: Let
v1 � v2 . . . � vK ≠ 0

where v1 , v2 . . . , vK−1{ } ∈H═
⎛⎝ ⎞⎠, Def. 11( )

Case 2b: If
v1 � v2 . . . � vA( ), vA+1 � vA+2 . . . � vB( ) . . . vK− K+1( ) . . . � vK−1 � vK( )

where v1 , v2 . . . , vK{ } ∈H═
⎛⎝ ⎞⎠, Def. 12( )

We can immediately see from Case 2 that it is possible to
have a finite number of subsets of non-trivial identical vectors
exist inH═ which is dependent on its cardinality (Kundu, 2023a).
We will formally define the number of subsets that can be
formed as (τ) (Def. (13)) (Kundu, 2023a),

τ ≝ 1 +∑t�#H═ −2
t�2

#H
═

t
⎛⎝ ⎞⎠, 10( )

� 1 iffH
═ � 2, 3{ }

≥ 2 iffH
═
≥ 4

⎧⎪⎨⎪⎩ . 10.1( )

We define the exact number of vectors to be reassigned on
account of their uniqueness as τ═, i.e., from H═ to H (Def. (14)). We
will now compute the number finite subsets for different

cardinalities of H═,
For τ � 1,

if v1 � v2 . . . � vK|K � #H
═ � 2, 3{ }( ),

then,
v1 ∨ v2 . . .∨ vK � ∨k�K

k�1 vk ∈ H
and,

v1, v2 . . . , vK−1{ } ∈H═
⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠,

Def. 15( )

Clearly, τ
═ � 1 , (11)

τ0#H � #H + τ,
═ (12)

� #H + 1, (12.1)
and, #H

═ � A − 1, (13)

� #H
═ − 1. (13.1)
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For τ � 2, the corresponding data is

if v1 � v2 . . . � vA( ) and vA+1 � vA+2 . . . � vK( )|K � #H
═
≥ 4,

then,

v1 ∨ v2 . . .∨ vA � ∨k�A
k�1 vk ∈ H

and,

v1, v2 . . . , vA−1{ } ∈H═
⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠ and

vA+1 ∨ vA+2 . . .∨ vK � ∨k�K
k�A+1vk ∈ H

and,

vA+1 ∨ vA+2 . . . , vK−A−1{ } ∈H═
⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (Def .16)

Here, τ
═
A � τ

═
K � 1 , (14)

0 τ
═
~ τA + τK, (15)
� 2, (15.1)

0#H � #H + τ , (16)
� #H + 2, (16.1)

and #H
═ � A − 1( ) + K − A − 1( ), (17)

� K − 2, (17.1)
� #H

═ − 2. (17.2)
In general, for τ-subsets of identical vectors in H

═
the number

of τ
═
-vectors that will be reassigned will be numerically

identical (τ ~τ
═
),

#H � #H + τ
═
, (18)

#H
═ � #H

═ − τ
═
, (19)

2.2 Generic description, availability, and
guidelines for using “ReDirection”

“ReDirection” is freely available and can be updated or
installed directly from the graphics user interface (GUI) (R-4.1.
x) as “update.packages (‘ReDirection’)” and/or “install.packages
(‘ReDirection’)” from any of the CRAN mirrors. “ReDirection” is
built in RStudio (1.4.1717) and tested in R-4.1. x. “ReDirection”
comprises three functions (calculate_reaction_vector, check_
matrix, and reaction_vector). The dependencies for “ReDirection”
are the packages “pracma,” “MASS,” “stats,” and the combinations
function from the R-package (“gtools”). The downloaded
package includes detailed documentation of all the functions,
along with ready-to-use examples and tests of functionality.
“ReDirection” utilizes these functions sequentially and processes
the stoichiometry number matrix of the reactants/products
and reactions of a biochemical network that is defined by
the user (Figure 1). In addition to implementing “ReDirection”
locally, several R-scripts are developed in house, and used to
preformat (input and output) and analyze data. The algorithm
followed by “ReDirection” can be divided into simpler steps. These
include checking the user-defined stoichiometry matrix, searching
for a suitable null space-generated subspace, screening and
partitioning terms, and computing the probable dissociation
constant (Figure 1).

2.2.1 Checking the user-defined stoichiometry
number matrix for a biochemical network

Although “ReDirection” is simple to operate, there are a few
guidelines that the user needs to be aware of whilst using it.
“ReDirection” is reaction-centric and requires that the number of
reactions and reactants/products of a modeled biochemical network
strictly conforms to the lower bounds for each (Kundu, 2023a). Since
the user is not expected to validate the stoichiometry number matrix
manually, “ReDirection” undertakes this task and carries out this
unequivocally prior to commencing the iterations. In addition to the
stoichiometry number matrix, the user is expected to provide a
logical argument (TRUE, FALSE) that indicates whether the
reactions are to be considered rows or columns,

TRUE :� Reactions as rows S( ), (Def .17)
FALSE :� Reactions as columns S( ) . (Def .18)

S ~
S iffTRUE,
S

T if FALSE.
{ (Def . 19)

“ReDirection” utilizes these data to assign the appropriate
orientation to the stoichiometry number matrix (step 1;
Figure 1),

Another checkpoint, albeit internal, is the identification and
subsequent exclusion of linear dependent row and column vectors
that are contributed by half-reactions (forward, reverse) of the
modeled biochemical network (step 1; Figure 1). “ReDirection”
accomplishes this by recursively multiplying each reaction vector
(ri ∈ ZJ) with the scalar quantity (−1) and checking whether this
results in a duplicate vector (Kundu, 2023a). If this is true, then
“ReDirection” excludes this reaction vector,

If
rx, ry ∈ ZJ s.t. ry � −1( ).rx

where x ≠ yand x, y � 1, 2 . . . I
═⎛⎝ ⎞⎠, (Def .20)

then −1( ).ry � −1( ). −1( ).rx � rx for each x � 1, 2 . . . I
═( ) (20, 21)

and rx ∨ ry ∉ ZJ.

It is clear that the final list of reactions that “ReDirection”
(I═″ReDirection″) considers is only half of what may have originally
been entered by the user, I

═
 ~ I

═
User; Eq. (22), for the complete

biochemical network,

I
═
″ReDirection″ < I

═

, (23)

� I
═


2
, (23.1)

~
I
═
User

2
. (23.2)

The modified stoichiometry number matrix is now

S ⊂ ZJ×I
═
″ReDirection″ (24)

� Z
J×

I
═
User
2( )

. (24.1)

Frontiers in Molecular Biosciences frontiersin.org04

Kundu 10.3389/fmolb.2023.1206502

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1206502


“ReDirection” rechecks the modified stoichiometry number
matrix (steps 1–3; Figure 1),

I
═
″ReDirection″ ≥ J + 2, (25)

0I
═
″ReDirection″ > rank S( ), (26)

I
═
″ReDirection″ ≥ 6. (27)

“ReDirection” rechecks the modified stoichiometry number
matrix (steps 1–3; Figure 1),

If there are no further deficiencies, “ReDirection” computes the
null space (Step 2; Figure 1):

V ~ Null space S( ) , (Def .21)

≝
Null space S( )for reactions as rows ofS,
Null space S

T( )for reactions as Columns ofS.
{ (28)

2.2.2 “ReDirection”-mediated search for a suitable
null space-generated subspace to compute the
probable dissociation constant for every reaction
of a biochemical network

“ReDirection” then searches for a suitable null space-generated
subspace (V═⊂ V) to compute the probable dissociation constant for
every reaction of a user-defined biochemical network. “ReDirection” does
this by combinatorially summing only non-trivial and unique null space
vectors over several iterations. Let us describe this null space-generated
subspace as a function of u-iterations, where u � 1, 2 . . .U ∈ N,

V═~ V═u ∋ vuk ∈ RI
═

, (29)
V═u≝Comprehensive subspace ofV for the uth − iteration, (30)

where

k � 1, 2 . . .K

u � 1, 2 . . .U ∈ N, (31)

FIGURE 1
Schematic representation of the steps deployed by “ReDirection” to characterize every reaction of a user-defined biochemical network with the
probable dissociation constant: “ReDirection” checks the stoichiometry number matrix that is provided by the user for a modeled biochemical network
for compliance with pre-defined criteria. If true, then “ReDirection” computes a null space-generated subspace by excluding all redundant and trivial
vectors, and combinatorially summing the vectors that remain. “ReDirection” also defines a reaction-specific sequence vector which comprises
terms drawn from each row of the resulting subspace. “ReDirection” computes several descriptors (mathematical, statistical) for the numerical values that
comprise this vector and partitions these into distinct subsets in accordancewith the expected outcomes (forward, reverse, and equivalent) for a reaction.
“ReDirection” then maps the sum of the terms of each outcome-specific subset to the strictly positive real number and bins these to a reaction-specific
outcome vector. The p1-norm of this vector is the probable dissociation constant for a reaction and is used to annotate the same. “ReDirection”
accomplishes this recursively and over several iterations until every reaction of the modeled biochemical network has been assigned an unambiguous
outcome. Abbreviations: ηi , probable dissociation constant for the ith-reaction of a user-defined biochemical network; S, user-defined stoichiometry
number matrix for a biochemical network; S1-7, steps of the algorithm deployed by “ReDirection” to compute the probable dissociation constant and
assign an outcome to every reaction of a user-defined biochemical network; NSV, null space-generated subspace vector.
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K � #V═u.

Rewriting V═u in terms of the subsets H,H═ ,L whilst preserving
the null space spanning vectors (V), we obtain

V═u � V ∪ Hu ∪ H═ u ∪ Lu. (32)

Clearly, with each iteration, the computational complexity
increases with a corresponding increase in the time required by
“ReDirection” to completely annotate every reaction of a
biochemical network. Therefore, “ReDirection” identifies
and excludes these vectors in an attempt to complete the
annotations within a reasonable amount of time (steps 3–7;
Figure 1). The pseudocode for the case where the nullity of the
null space (#V � 2) is presented and discussed for a null space-
generated subspace in terms of the uth-iteration is shown in
Table 1.

2.2.3 Row-wise screening and partitioning of terms
of the selected null space-generated subspace

Every row of this uth-iteration-specific and null space-generated
subspace is redefined as an ith-reaction-specific sequence vector and is
characterized by several numerical descriptors such as the number of
terms, mean, standard deviation, and upper and lower bounds (Def.
(22)) (Kundu, 2023a). On the basis of these descriptors, the terms from
each row are binned to the outcome-specific subsets forward (F), reverse
(B), or equivalent (E), summed, and mapped to strictly positive real
numbers (Def. (23); Eqs (33–43) (Table 2) (Kundu, 2023a). The
mapped terms populate the ith-reaction-specific output vector with a
p1-norm, which is the probable dissociation constant for the
tth-reaction (Defs. (24, 25); Eqs (44–48)) (Table 2) (Kundu, 2023a).
“ReDirection” implements this algorithm iteratively and recursively,
and computes the probable dissociation constant for every reaction of a
user-defined biochemical network.

2.3 “ReDirection”-based numerical studies
to ascertain and assess an upper bound for
the maximum number of reactions for a
user-defined biochemical network

It has already been proven that the algorithm deployed by
“ReDirection” is likely to be NP-hard (Kundu, 2023a). This
means that for a biochemical network whose output is
determined by summing its constituent terms, there is a limit
on the maximum number of reaction vectors that can be modeled
by a user. Since “ReDirection” utilizes combinatorial summations
to identify a suitable null space-generated subspace from where
the probable reaction constants for a modeled biochemical
network can be computed, the upper bound for the maximum
number of reaction vectors is likely to be lower, i.e., there is a
narrow permissible limit.

Since “ReDirection” needs to be user-friendly, an indicator of this
must be available a priori. We utilize the time metric to ascertain this
numerically. In other words, the time (Tmin) that “ReDirection” takes
to unambiguously annotate every reaction of a biochemical network is
utilized to delineate an upper bound for the maximum number of
reaction vectors that the user can incorporate for a biochemical
network. We create several stoichiometry number matrices (n � 50)
in accordance with the previously established constraints and examine
the run-time that “ReDirection” takes to compute the probable
dissociation constants for the simulated yet plausible biochemical
networks (Figure 2A; Supplementary Text S1) (Kundu, 2023a). The
studies are carried out on a system with the following configuration: i5-
10400F processor, clock speed 2.9 GHz, 64-bit, 16 GB RAM.

TABLE 1 Pseudocode to determine cardinality as the function of a finite
number of u-iterations, for a null space-generated subspace where the nullity
for a stoichiometry number matrix is 2

a, b: Null space vectors

u: Number of iterations

A: Cardinality of null space or null space − generated subspace

A
═
: Incremented cardinality ofnull space − generated subspace

t: Combinatorial index

K: Number of summed vectors

τ: Number of groups of summed and identical vectors

τ
═
: Number of vectors of summed and identical vectors to include

w: Number of vectors to exclude

u ← 1

A ← 2

Start:

A
═
, w, τ

═
, τ ← 0

t ← 2 . . .A

K ← ∑t�A
t�2

A
t

( )
if(X1 � X2 . . .� XK � 0) then,

w ← w +K

endif

elseif(X1 ≠ X2 . . .≠ XK ≠ 0) then,

A
═
← A + K

endif

elseif(X1 � X2 . . . � XA ≠ 0) and (XA+1 � XA+2 . . .�XK ≠ 0) then,

τ ← 2

τ
═← τ

w ← (w +K) − τ
═

A
═
← A + τ

═

endif

u ← u + 1

A ←A
═

A
═
, w, τ

═
, τ ← 0

Next:
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TABLE 2 “ReDirection”-based computation of the probable dissociation constant for the ith-reaction of a user-defined biochemical network.

Analysis and mapping Subset (F) Subset (B) Subset (E)

Output-specific sum of terms
(domain): x(.) ∈ R ∩ (−∞,∞)

Case 1: x1 > 1
Case 2: x2 ∈ 0, 1( )

(33)
(34)

Case 1: −x2 ∈ −1, 0( )
Case 2: x3 < − 1

(37) (38) |x4| ≈ 0 (41)

Linear map: g: x ∈ R ∩ (−∞,∞) ↦ y ∈ R ∩ (0,∞) yF ≝g x1( ) or g x2( )
� x1 or x2

(35)
(35.1)

yB ≝g −x2( ) or g x3( )
� e−x2 or ex3

(39)
(39.1)

yE ≝g x4( )
� ex4

(42)
(42.1)

Range: y(.) ∈ R ∩ (0,∞) yF ∈ R ∩ (0,∞) (36) yB ∈ R ∩ (0,∞) (40) yE ∈ R ∩ 1{ } (43)

Reaction-specific outcome vector: T
g x1( ) or g x2( )( ) g −x2( ) or g x3( )( ) g x4( )( )[ ]T � x1 or x2( ) e−x2 or ex3( ) ex4( )[ ]T 44( )

� yF yB yE[ ]T 44.1( )

Prediction Forward Reverse Equivalent

Probable dissociation constant (p1-
norm): ‖T‖1 � ηi ∈ R ∩ (0,∞)

Case 1: x1 + 0 + 0
� ηi ∈ R ∩ 1,∞( )

Case 2: x2 + e−x2 + 0
� ηi ∈ R ∩ 1,∞( )

(45)
(45.1)
(46)
(46.1)

0 + ex3 + 0
� ηi ∈ R ∩ 0, 1( )

(47)
(47.1)

0 + 0 + ex4

� ηi ∈ R ∩ 1{ }
(48)
(48.1)

Abbreviations: x(.), real-valued numeral of a null space-generated subspace; g: x(.), linear map for a real-valued numeral of a null space-generated subspace; y(.), strictly positive mapped real-

valued numeral;T , reaction-specific outcome vector; i, ith-reaction of a user-defined biochemical network; ηi , probable dissociation constant for the i
th-reaction of a user-defined biochemical

network; F, B, E, outcome-specific subsets (forward, F; reverse, B; and equivalent, E).

FIGURE 2
Regression of elapsed real time with network-specific parameters. (A) The data, i.e., elapsed run-time (min) from several observations (n � 50), are
plotted against the network-specific parameters of reactant number, reaction number, and the cardinality of the reaction-specific null space-generated
subspace chosen by “ReDirection” to compute the probable dissociation constant for a reaction. The scatter plot data are modeled with a specific linear
regression equation, and the relevant coefficient of differentiation (R2) is highlighted; (B) scatter diagram of the run time that elapses when
“ReDirection” attempts to unambiguously annotate every reaction of a simulated biochemical network with the number of reactants/products that
participate in the network; (C) scatter diagram of the run time that elapses when “ReDirection” attempts to unambiguously annotate every reaction of a
simulated biochemical network with the number of reactions that participate in the network; and (D) scatter diagram of the run time that elapses when
“ReDirection” attempts to unambiguously annotate every reaction of a simulated biochemical network with the cardinality of a reaction-specific null
space-generated subspace that is chosen by “ReDirection” to compute the probable dissociation constant for a reaction.
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In order to assess these observations, we compute a truth table
with the following assumptions and abbreviations (Defs 26–29):

TP :� Time T( ) − to − unambiguous annotation of reaction

where #V ∈ 2, 4[ ] andT ∈ 0min , 20min( ),
FP :� Time T( ) − to − unambiguous annotation of reaction

where #V > 4 andT ∈ 0min , 20min( ),
FN :� Time T( ) − to − unambiguous annotation of reaction

where #V ∈ 2, 4[ ] andT> 20min ,

TN :� Time T( ) − to − unambiguous annotation of reaction

where #V > 4 andT> 20min .

This yields the following indices to assess our premise:

Precision ≝
TP

TP + FP
, (49)

Recall sensitivity( ) ≝
TP

TP + FN
, (50)

Specificity ≝1 − FP

FP + TN
, (51)

� TN

TN + FN
, (51.1)

Accuracy ≝
TP + TN

TP + FP + FN + TN
. (52)

2.4 “ReDirection”-based studies on
physiologically relevant biochemical
networks

We conclude this study by examining the relevance of the
probable dissociation constants that are computed by
“ReDirection” in physiologically relevant biochemical networks
for galactose metabolism and heme and cholesterol biosynthesis.
The stoichiometry number matrices for these networks are
constructed in accordance with the numerical constraints
discussed here and in previous work (Figure 3; Figure 4;
Figure 5; Supplementary Texts S2–S4) (Kundu, 2023a; Kundu,
2023b).

Galactose–glucose interconversion is readily observed
within the cell, catalyzed by the enzyme UDP-galactose 4-
epimerase (EC 5.1.3.2), and suggests a biochemical network
with several potentially bidirectional reactions (Conte et al.,
2021; Nicoli et al., 2021). Here, “ReDirection” computes the

FIGURE 3
Schematic representation of a “ReDirection”-mediated investigation of a constrained biochemical network for human galactose metabolism. The
biochemical network for galactose metabolism in Homo sapiens comprises several potentially bidirectional reactions. Here, “ReDirection” investigates
the conversion of UDP-galactose to alpha-D-galactose 1-phosphate (r12) and D-galactose (r13) via alternate pathways on the unperturbed set of
reactions (r1 − r11). The data suggest that a large proportion of the reactions is equivalent and may, therefore, function to regulate galactose
metabolism. Additionally, the net direction that is observed before and after perturbing the system is toward the biosynthesis of UDP-glucose. This is in
accordancewith the relativelymilder clinicalmanifestations of inborn errors ofmetabolism that arise due tomutations in the enzymes (epimerase, kinase)
of the pathway. Abbreviations: ηi, probable dissociation constant for the ith-reaction of a constrained biochemical network of human galactose
metabolism; Gal-X, galactose containing di (galactinol, melibitol, epimelibiose)- or oligo (stachyose)-saccharides, which are cleaved by beta-
galactosidase (EC 3.2.1.22); UDP, uridine-di-phosphate; UTP, uridine tri-phosphate.
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probable dissociation constants for every reaction of a constrained
biochemical network (I═Gal � 13, JGal � 11) for human galactose
metabolism (Eqs. (53, 54)) (Figure 3; Supplementary Text S2). The
effect of perturbing r1 − r11 is investigated by introducing the atypical
reactions r12 (UDP-galactose→ alpha-D-galactose 1-phosphate) and r13
(UDP-galactose → alpha-D-galactose 1-phosphate) into the network
(Figure 3). The enzymes (UTP-hexose 1-phosphate uridyltransferase,
EC 2.7.7.10; UTP-monosaccharide-1-phosphate uridyltransferase,
EC 2.7.7.64) that mediate the transformation of UDP-galactose to
alpha-D-galactose 1-phosphate are not significant contributors to
human galactose metabolism. This reaction is mediated by UDP-
glucose-hexose-1-phosphate uridyltransferase (EC 2.7.7.12) (r9) and is
a major regulatory checkpoint for galactose–glucose interconversion
(Figure 3). Cholesterol biosynthesis is the result of the mevalonate
and non-mevalonate pathways, along with a well-characterized
mitochondrial shunt pathway that may function to protect hydroxy-
methyl-glutaryl (HMG) CoA reductase (EC 1.1.1.34) from the
deleterious effects of mevalonate (Edmond and Popjak, 1974;
Nakanishi et al., 1988; Eisenreich et al., 2004; Buhaescu and Izzedine,
2007). Here, we present, analyze, and discuss a biochemical network
(I═Choles � 18, JCholes � 15) for eukaryotic cholesterol synthesis by the
mevalonate pathway, along with the shunt pathway (Eqs. (55, 56))

(Figure 4; Supplementary Text S3). Heme biosynthesis is central to
the utilization of iron in the transport of oxygen and carbon dioxide via
hemoglobin and other proteins, bilirubin-mediated conjugation and
excretion of xenobiotics, and electron transfer in oxidative
phosphorylation (Paoli et al., 2002; Thom et al., 2013; Poulos, 2014).
We present, analyze, and discuss a biochemical network (I═Heme �
21, JHeme � 18) for heme biosynthesis and explore the effects of
uroporphyrins (I) and (III) and coproporphyrins (I) and (III) on
the immediate precursors uroporphyrinogens (I) and (III) or products
coproporphyrinogens (I) and (III) (Eqs. (57, 58)) (Figure 5;
Supplementary Text S4).

3 Results and discussion

3.1 Steps deployed by “ReDirection” to
compute the probable dissociation constant
for every reaction of a user-defined
biochemical network

“ReDirection” utilizes the aforementioned functions
sequentially and processes the stoichiometric number matrix for

FIGURE 4
Schematic representation of a “ReDirection”-mediated investigation of a constrained biochemical network for eukaryotic cholesterol biosynthesis.
The high number of predicted equivalent reactions (≈ 44%) for cholesterol biosynthesis suggests a regulatory role and may, therefore, be a reason why
this pathway is conserved across eukaryotes, bacteria, and archaea. The shunt pathway is a simple yet effective way of redirectingmevalonate prior to ring
closure. Smith–Lemli–Opitz syndrome is an inborn error of metabolism that arises due to mutations in the terminal enzyme of cholesterol
biosynthesis (delta-7-reductase; EC 1.3.1.21) and is postulated to cause an increased flux of mevalonate through the shunt pathway, along with a
concomitant increase in the excretion of urinary mevalonate. The results of this study support this notion with all the probable dissociation constants
favoring a prominent role for the shunt pathway. The isomeric conversion of isopentenyl pyrophosphate to dimethylallyl pyrophosphate from
mevalonate has the greatest numerical value of all the predicted probable dissociation constants (η7 ≈ 45), which also supports the rapid removal of
mevalonate either by conversion (main, shunt) and/or excretion in urine. Abbreviations: ηi , probable dissociation constant for the ith-reaction of a
constrained biochemical network for cholesterol biosynthesis.
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the biochemical network that is defined by the user and computes
the probable dissociation constant for every reaction (Figure 1). This
is conducted sequentially as follows:

Step 1. “ReDirection” checks whether the matrix of
stoichiometry numbers that the user inputs is compliant with
previously outlined criteria and does not have any linear
dependent vectors. If found, “ReDirection” excludes them. The
modified input matrix is rechecked.

Step 2. “ReDirection” then computes the null space of the checked/
rechecked stoichiometric number matrix of the reactants/products
and reactions of the user-defined biochemical network.

Step 3. “ReDirection”processes and screens this null space for redundant
and/or trivial vectors and defines a subspace by excluding the same.

Step 4. “ReDirection” combinatorially sums the remaining vectors,
i.e., non-redundant and non-trivial, and repeats step 3 for a finite
number of u-iterations, where u � M ∈ N.

Step 5. For u � U>M iterations, “ReDirection” defines, populates,
and computes several descriptors (sum, arithmetic mean, and
standard deviation) for a reaction-specific sequence vector with
terms that are drawn from each row of a null space-generated
subspace.

Step 5a. “ReDirection” tests each term of an ith-reaction-specific
sequence vector for convergence.

Step 5b. If this term diverges and possesses a numerical value
greater than 2 standard deviations from the mean, then this term is
binned into the appropriate outcome-specific (forward/reverse/
equivalent) subset.

Step 5c. The terms of each outcome-specific subset form a finite
series whose sum is computed by “ReDirection.”

Step 5d. “ReDirection” then maps these sums to strictly positive
real numbers which are then specific for each outcome-specific
subset.

FIGURE 5
Schematic representation of a “ReDirection”-mediated investigation of a constrained biochemical network for heme biosynthesis. Here, we present
a biochemical network which examines the effects of the uroporphyrins (I) and (III) and coproporphyrins (I) and (III) on the immediate precursors
uroporphyrinogens (I) and (III) or products coproporphyrinogens (I) and (III) on the flux of heme (η6 , η7 , η8 , η18 , η19; η9 , η10 , η11 , η20 , η21). The uroporphyrins
(I) and (III) and coproporphyrins (I) and (III) are generated by sunlight or the spontaneous removal of protons and can function as organic free radicals.
Here, we examine the premise that once generated; the free radical cycle involving these is self-propagating and can considerably damage the
neighboring skin and other tissues. Interestingly, our data (η7 ≈ η10 ≈ 0.03) offer a plausible explanation into the pathophysiology of porphyria cutanea
tarda (PCT). This inborn error of metabolism is due to a defect in the enzyme uroporphyrinogen decarboxylase and results in debilitating blisters on the
skin due to exposure to sunlight. Additionally, in the absence of enzyme-catalyzed reactions, the sequestration of the substrates uroporphyrinogens (I)
and (III) and/or coproporphyrinogens (I) and (III) ensures, by the law of mass action, that the flux is toward the biosynthesis of heme and its subsequent
incorporation into several heme proteins of physiological and biochemical relevance. Abbreviations: ηi, probable dissociation constant for the
ith-reaction of a constrained biochemical network for heme biosynthesis; HemeX, heme-containing proteins.
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TABLE 3 Run-time characteristics of the “ReDirection”-mediated computation of probable dissociation constants for simulated biochemical networks (n � 50).

S. no. J I
═
″ReDirection″ #V T(min ) Label

1 4 6 2 0.0003 TP

2 4 7 3 0.0003 TP

3 4 8 4 >20 FN

4 4 9 5 >20 TN

5 5 7 2 0.0002 TP

6 5 8 3 0.001 TP

7 5 9 4 >20 FN

8 5 10 5 >20 TN

9 6 8 2 0.0002 TP

10 6 9 3 0.001 TP

11 6 10 4 >20 FN

12 6 11 5 >20 TN

13 7 9 2 0.0002 TP

14 7 10 3 13 TP

15 7 11 4 12.36 TP

16 7 12 5 >20 TN

17 8 10 2 0.0002 TP

18 8 11 3 0.0012 TP

19 8 12 4 >20 FN

20 8 13 5 >20 TN

21 9 11 2 0.0001 TP

22 9 12 3 0.0013 TP

23 9 13 4 15 TP

24 9 14 5 >20 TN

25 10 13 3 0.0011 TP

26 10 14 4 >20 FN

27 10 15 5 >20 TN

28 11 13 2 0.0012 TP

29 11 14 3 0.0012 TP

30 11 15 4 13.6 TP

31 11 16 5 >20 TN

32 13 15 2 0.01 TP

33 13 16 3 0.0013 TP

34 13 17 4 1 TP

35 13 18 5 >20 TN

36 13 19 6 >20 TN

37 14 16 2 0.0012 TP

38 14 17 3 0.07 TP

(Continued on following page)
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Step 5e. These outcome-specific numerical measures form the
ith-reaction-specific outcome vector.

Step 6. “ReDirection” computes the p1-norm of the reaction-
specific outcome vector and annotates the reaction.

Step 7. “ReDirection” checks whether the annotations for all the
other reactions of the user-defined biochemical network are
unambiguous.

Step 7a. If there is no reaction that has been annotated
ambiguously, then “ReDirection” outputs the predicted
outcomes for every reaction of the user-defined biochemical
network.

Step 7b. If there is a reaction that has been annotated ambiguously,
then “ReDirection” continues the iterations.

Step 7c. “ReDirection” combinatorially sums all non-
redundant and non-trivial null space-generated subspace
vectors that remain, defines a new subspace, and repeats
steps 5–7.

3.2 “ReDirection”-based delineation of an
upper bound for the number of reactions of
a biochemical network

The data suggest that the cardinality of the null space-
generated subspace that is chosen to compute the probable
dissociation constant for a reaction determines not only the
time taken to complete the computations but also whether this
can be accomplished in real time (Figures 2B–D; Table 3). It was
observed that this was achievable, i.e., T ∈ (0min , 20min),

regularly for null spaces with 2-, 3-, and 4-null space spanning
vectors (Figures 2B–D; Table 3). However, when the nullity
exceeded 4, the computations did not terminate even when
the run time significantly exceeded 20 min (T > 60min)
(Table 2):

T ∈ 0min , 20min( ) iff I
═
″ReDirection″ ∈ J + 2, J + 4[ ]

and #V ∈ 2, 4[ ]( ) , (59)

T> 20min if I
═
″ReDirection″ > J + 4
and #V > 4

( ) . (60)

On the basis of the time taken by “ReDirection” to complete the
annotations for each simulated biochemical network, we can
categorize each outcome in terms of the categorical variables
(TP, FP, FN, TN) (Table 3). The complete dataset is
summarized as follows:

TP � 26, (61)
FP � 0, (62)
FN � 11, (63)
TN � 13. (64)

This yields the following indices to assess our premise:

Precision � 100%, (65)
Recall sensitivity( ) ≈ 70%, (66)

Specificity � 100%, (67)
Accuracy ≈ 78%. (68)

Clearly, we can achieve significant proportioning of these data
on the basis of our estimate of an upper bound for the reactions of
these simulated biochemical networks (accuracy, precision,
specificity, and recall). We suggest the following bounds for the
number of reactions which a user may specify for a modeled
biochemical network:

TABLE 3 (Continued) Run-time characteristics of the “ReDirection”-mediated computation of probable dissociation constants for simulated biochemical
networks (n � 50).

S. no. J I
═
″ReDirection″ #V T(min ) Label

39 14 18 4 >20 FN

40 14 19 5 >20 TN

41 14 20 6 >20 TN

42 15 17 2 0.0002 TP

43 15 18 3 14 TP

44 15 19 4 >20 FN

45 16 18 3 14 TP

46 16 19 3 >20 FN

47 16 20 4 >20 FN

48 16 21 5 >20 TN

49 17 19 3 >20 FN

50 17 20 4 >20 FN

Abbreviations: J, reactants or products for the user-defined biochemical network; I
═
″ReDirection″ , reactions considered for computing the probable dissociation constant; #V, cardinality of null

space; T, time taken to unambiguously compute the probable dissociation constant for every reaction a user-defined biochemical network; TP, true positive; FP, false positive; FN, false negative;

TN, true negative.
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I
═
″ReDirection″ ∈ J + 2, J + 4[ ]. (69)

3.3 “ReDirection”-based characterization of
physiologically relevant biochemical
networks

We now utilize “ReDirection” with these constraints to compute
probable dissociation constants and, thence, investigate the
biochemical networks of human galactose metabolism and
cholesterol biosynthesis.

The presented biochemical network for galactose metabolism
comprises a significantly larger fraction (≈ 63%) of equivalent
reactions, as compared to the forward (≈ 27%) and reverse
(≈ 10%) reactions (Figure 3). We also observe the directional
preference of several reactions (η1 �
η2 ≈ 12.7, η3 ≈ 26, η10 ≈ 0.04) toward the synthesis of UDP-
glucose (Figure 3). This, when coupled with the equivalent and
sequential conversions to UDP-galactose, lactose, and galactose,
(η4−6 ≈ 1.000) ensures that there is minimal change to the pool
of galactose-containing complex carbohydrates and lipids
(glycosphingolipids, gangliosides, cerebrosides, and
mucopolysaccharides) (Thom et al., 2013; Poulos, 2014).
Additionally, since the magnitude of the probable dissociation
constant for η3 is twice that of η1 and η2 (η3η1 �

η3
η1
> 2.0), the

utilization of alpha-galactose 1-phosphate is faster than its
synthesis. Here, in addition, by the law of mass action, there is a
net flux of the network toward the biosynthesis of UDP-glucose
(Figure 3). In this scenario, the atypical reactions (r12, r13) function
to perturb galactose metabolism with flux toward the synthesis of
galactose 1-phosphate (η12 ≈ 13.6) or galactose (η13 ≈ 12.7) from
UDP-galactose and either complements or compensates, where
applicable, reactions r1 and r2 (Figure 3). These studies suggest a
predilection of the biochemical network toward synthesizing
galactose, which, along with the activity of UDP-galactose 4-
epimerase, constitute a plausible explanation for the milder
clinical profile of the inborn errors of galactose metabolism (Raff
et al., 1978; Jessen et al., 1985) (Figure 3).

The high number of equivalent reactions (≈ 44%) studied for
cholesterol biosynthesis in the biochemical network suggests a
regulatory role, which may account for the conservation of this
pathway across taxa (eukaryotes, bacteria, and archaea) (Figure 4)
(Edmond and Popjak, 1974; Nakanishi et al., 1988). Catabolism of
the cyclopentanoperhydrophenanthrene (CPPP) ring of cholesterol
is elaborate and occurs via the incorporation of a single molecule of
oxygen by the heme- and iron-dependent cyclooxygenase
P450 monooxygenase system of enzymes. The shunt pathway is a
simple and yet an effective way of redirecting mevalonate prior to
ring closure (Edmond and Popjak, 1974; Nakanishi et al., 1988;
Pappu et al., 2002; Roullet et al., 2012). Smith–Lemli–Opitz
syndrome is an inborn error of metabolism that arises due to
mutations of the terminal enzyme in cholesterol biosynthesis
(delta-7-reductase; EC 1.3.1.21) (Pappu et al., 2002; Roullet
et al., 2012). This is postulated to result in an increased flux of
mevalonate through the shunt pathway along with a concomitant
increase in the excretion of urinary mevalonate (Edmond and
Popjak, 1974; Nakanishi et al., 1988; Pappu et al., 2002; Roullet

et al., 2012). This study supports this notion, at least in theory,
with all the probable dissociation constants favoring a
prominent role for the shunt pathway (r11 → r8 → r7 → r17)
(η11 ≈ 0.158, η8 ≈ 0.028, η7 ≈ 45, η17 ≈ 9.572) (Figure 4). The
isomeric conversion of isopentenyl pyrophosphate to
dimethylallyl pyrophosphate from mevalonate has the greatest
numerical value of all the predicted probable dissociation
constants (η7 ≈ 45) for the biochemical network. This, in
addition, supports the rapid removal of mevalonate either by
conversion (main, shunt) and/or excretion in urine (Edmond
and Popjak, 1974; Nakanishi et al., 1988; Pappu et al., 2002;
Roullet et al., 2012).

The distribution of equivalent (≈ 53%; I
═
Heme � 11), forward

(≈ 37%; I
═
Heme � 8), and reverse (≈ 10%; I

═
Heme � 2) reactions

supports a similar inference for heme biosynthesis (Figure 5).
The rate-limiting step for heme biosynthesis is the reaction
catalyzed by ALAS1 (δ-aminolevulinate synthetase I; EC 2.3.1.37).
Our data suggest that the reactions from coproporphyrinogens (I)
and (III) to uroporphyrinogens (I) and (III) (η7 ≈ η10 ≈ 0.03) may
also contribute significantly to this self-regulation. These reactions
are catalyzed by uroporphyrinogen decarboxylase (EC 4.1.1.37) and
uroporphyrins (I) and (III), along with the coproporphyrins (I) and
(III) that are subsequently generated by sunlight or the spontaneous
removal of protons and can function as organic free radicals (Stein
et al., 2017). Additionally, and in the absence of enzyme-catalyzed
reactions, this catalytic sequestration of the substrates
(uroporphyrinogens (I) and (III) and coproporphyrinogens (I)
and (III)) ensures, by the law of mass action, that the flux is
toward the biosynthesis of heme and its incorporation into heme
proteins (Figure 5). Furthermore, since the free radical cycle
involving these is self-propagating, the accumulated products,
once generated, considerably damage the neighboring skin and
other tissues. This reaction clinically partitions disorders of heme
biosynthesis into those with photosensitivity and those with
predominantly neuropsychiatric manifestations. Porphyria
cutanea tarda (PCT) is an inborn error of metabolism due to a
defect in the enzyme uroporphyrinogen decarboxylase and results in
debilitating blisters on the skin due to exposure to sunlight (Stein
et al., 2017). Our data (η7 ≈ η10 ≈ 0.03) offer a plausible explanation
for the genesis and pathophysiology of PCT (Figure 5).

3.4 The probable dissociation constants for a
biochemical network are suitable indices of
biochemical function

The probable dissociation constants for a biochemical
network provides the user with theoretically sound and
biochemically relevant indices by which reactions of a
biochemical network can be compared along with the
corresponding change in the reactants/products (Reinker
et al., 2006; Lecca et al., 2009; Haraldsdottir et al., 2012;
Shindo et al., 2018; Wittenstein et al., 2022; Kundu, 2023a). A
potentially novel application for these data is to incorporate these
into simulation studies with the stochastic simulation algorithms
(Gillespie, 2007; Kundu, 2016; Kundu, 2021). However, these
studies mandate, by definition, the use of every possible reaction
during a simulation run. This precludes the direct usage of data
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that are generated by “ReDirection” since only half the reactions
are considered in computing the probable dissociation constants
for the modeled biochemical network. The complete set of
reactions for a user-defined biochemical network (I═user) is simply

I
═
user � 2. I

═
″ReDirection″( ). (70)

We annotate this set of additional half reactions in terms of the
probable dissociation constant for the “ReDirection” annotated
reaction as (Kundu, 2016; Kundu, 2021; Kundu, 2023a)

if ηi ∈
R ∩ 1,∞( )
R ∩ 0, 1( )
R ∩ 1{ },

⎧⎪⎨⎪⎩
then η−i � 1.0, (Def .30)

for the pair of reversible reactions ri, r−i{ }.

This approach has yielded interesting insights into the export of
high-affinity peptides to the plasma membrane by the major
histocompatibility complex-I (MHC1) (Kundu, 2021). In that
study, the authors examined a low-affinity peptide-driven
biochemical network that could also be potentially regulatory
and, therefore, important in priming circulating CD8+ T-cell
lymphocytes into mounting a suitable immune response in the
presence of acute and chronic insults (Kundu, 2021). Similarly, a
role for reactive oxygen species in facilitating cellular proliferation
and transmigration whilst precluding a cell to senescence and
apoptosis concomitantly was addressed by creating a biochemical
network for an advancing phagocyte toward a noxious stimulus
(Kundu, 2016). The transduced signal was modeled to act through
lipid raft-interacting actin fibers that could stabilize the actin
cytoskeleton of the phagocyte and promote the development of a
single dominant lamellipodium in the direction of the noxious
stimulus (Kundu, 2016).

4 Conclusion

“ReDirection” is an R-package that computes the probable
disassociation constant for every reaction of a biochemical
network directly from a null space-generated subspace of a
stoichiometry number matrix. Whilst mathematical rigor is
ensured at all steps, biological relevance is maintained by
utilizing parameters and metrics in accordance with established
kinetic paradigms. “ReDirection” computes the probable
dissociation constant from first principles and can be used to
compare biochemical networks under varying intracellular
environments (baseline, perturbed), between cells, and across
taxa. Although computationally intense and possibly intractable
for larger networks, the predictions are reasonably rapid for
fewer reactions and are completed quickly in a desktop
environment. Future investigations should strive to improve
upon computational time, investigate perturbations, and validate

some of the findings by simulation studies. “ReDirection” is not
discovery-based and is better suited to addressing known and
often empirically intractable biochemical problems in silico with
simulations or generating testable hypotheses in a laboratory
setting.
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